(-2x^2+3)=(3x^2+4x-5)

Simple and best practice solution for (-2x^2+3)=(3x^2+4x-5) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (-2x^2+3)=(3x^2+4x-5) equation:



(-2x^2+3)=(3x^2+4x-5)
We move all terms to the left:
(-2x^2+3)-((3x^2+4x-5))=0
We get rid of parentheses
-2x^2-((3x^2+4x-5))+3=0
We calculate terms in parentheses: -((3x^2+4x-5)), so:
(3x^2+4x-5)
We get rid of parentheses
3x^2+4x-5
Back to the equation:
-(3x^2+4x-5)
We get rid of parentheses
-2x^2-3x^2-4x+5+3=0
We add all the numbers together, and all the variables
-5x^2-4x+8=0
a = -5; b = -4; c = +8;
Δ = b2-4ac
Δ = -42-4·(-5)·8
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{11}}{2*-5}=\frac{4-4\sqrt{11}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{11}}{2*-5}=\frac{4+4\sqrt{11}}{-10} $

See similar equations:

| 7p+15.89=1932 | | 4t+2+t²=6 | | 2x^-5x=12 | | 1a+5=5a | | x-1/5+7x/10=7 | | 2x^-5x=0 | | 35/6=3x | | (4y-9)+5y=140 | | -18=9(d+1 | | 27+5y-2=15y-10-3y | | 4y-9=140-5y | | (5x-6)^2=49 | | 3p^2+8p-16=0 | | x/2=-3.4 | | 7+4y=7-5y+132 | | 8(p-0.24)=4(2p-0.5) | | 2(5x+3)+3x=27 | | 180-5y=150 | | (x+5)6=45 | | 2x+3=16-x | | 2b+13=4b-21 | | 34x+3=157 | | 35x+3=157 | | 38=3(x-7) | | 3x+35=157 | | y=200-16^2 | | 3m-1/2=2m+2/3 | | (3+2)x+50=125 | | 1.5x+2.25x=0 | | 24+2n=1/3(n-5) | | -(4-7)=3h | | 9+9x=50 |

Equations solver categories